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Abstract. We present a new bilinear discontinuous (Galerkin) finite element discretization of
the P1 (spherical harmonics) equations, a first-order system of equations used for describing neutral
particle radiation transport or modeling radiative transfer problems. The discrete equations are
described for two-dimensional rectangular meshes; we solve the linear system with Krylov iterative
methods. We have developed a novel, two-level preconditioner to improve convergence of the Krylov
solvers that is based on a linear continuous finite element discretization of the diffusion equation,
solved with a conjugate gradient iteration, preceded and followed by one of several different smoothing
relaxations. A Fourier analysis shows that our approach is very effective over a wide range of
problems. Numerical experiments confirm the results of the Fourier analysis. Computations for a
realistic problem show that the preconditioner is effective and the solution method is efficient in
practice.
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1. Introduction. In this paper we consider the solution of the discontinuous
finite element (DFE) discretization of the P1 equations. There are two potential
applications in which we are interested:

1. consistent iterative convergence acceleration of particle transport calcula-
tions,

2. low order (angular) approximation to the transport equation for radiation
hydrodynamics problems.

The first application involves what is well known in the radiation transport com-
munity as Diffusion Synthetic Acceleration (DSA) [2]. The convergence rate of the
standard iterative method for solving the Boltzmann transport equation may be unac-
ceptably slow when applied to thermal radiative transfer problems containing highly
diffusive regions [29]. With some approximation to the transport equation, most no-
tably the diffusion operator, convergence of the iterative solution can be dramatically
accelerated by estimating the error in the scalar fluxes with the approximate operator
and correcting the most recent iterate. Generally speaking, the diffusion operator
must be spatially discretized in a way that is in some sense “consistent” with the
discretization of the transport equation [20, 21]. This ensures that the DSA algorithm
will be robust. The transport equation is often discretized with DFE methods because
of their desirable numerical properties [3, 22–24, 29]. Consistency dictates that diffu-
sion equation discretizations which are fully consistent with discontinuous transport
discretizations must also be discontinuous. It is possible to define simplified discon-
tinuous discretizations of the diffusion equation for transport acceleration purposes
but they are only partially consistent, restricting their applicability [1, 28]. The DFE
discretization of the P1 equations we will describe in this paper can be viewed as
discretizing the diffusion equation with a mixed, DFE method that is fully consistent
with the DFE transport discretization in which we are interested [37].
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The second application is for radiation hydrodynamics problems, where equations
that describe the transport of radiation are coupled with equations describing fluid
flow [32]. In practice, the radiation transport is modeled with a P1 (or diffusion)
approximation to the full Boltzmann transport equation for efficiency. The DFE dis-
cretization of the P1 equations we describe can be interpreted as an upwind Godunov
method. These methods are accurate and commonly used ways to discretize fluid flow
equations, such as Euler’s equations [25]. A key property of Godunov discretizations
is the conservation of energy, momentum, and mass over each mesh cell. Traditional
discretizations of the P1 equations generally use a staggered mesh which conserves
radiation energy but does not conserve radiation momentum over a spatial mesh cell.
Our method therefore locally conserves both the radiation energy and the radiation
momentum, a desirable property for radiation hydrodynamics. Furthermore, there
are certain advantages to using the same basic type of discretization for both the fluid
dynamics and the radiation transport [26].

Our DFE discretization of the P1 equations leads to a sparse linear system (sad-
dle point problem) that can be written in either nonsymmetric, positive definite form
or symmetric, indefinite form. This essentially new discretization is similar to some
mixed, discontinuous Galerkin (dG) methods which have been applied recently to the
solution of elliptic systems [4, 6, 13]. It is critical that we have an effective (in terms of
improved convergence rate) and efficient (in terms of computational effort needed to
achieve an adequate improvement in convergence rate) preconditioner for the Krylov
iterative methods we use to solve the sparse linear system (direct methods are imprac-
tical in our applications). We have developed a novel two-level preconditioner for the
DFE P1 equations. The two level approach is based on a vertex centered, continuous
finite element (CFE) diffusion equation discretization, combined with some standard
pre- and post-relaxations. Information is transferred between the two levels with a
sophisticated projection from the discontinuous representation to the vertex centered
representation and a simple interpolation back onto the discontinuous representation.
This is similar to the methods in [28], except that Morel, et al., considered a sim-
plified discontinuous diffusion discretization that is not fully consistent with DFE
transport equation discretizations. We suggest that it might be possible to use a sim-
ilar two-level preconditioning approach for the iterative solution of other mixed dG
discretizations.

The paper is organized as follows. First we will present the discretization of the
P1 equations in two-dimensional (x, y) geometry with rectangular meshes. Next we
will discuss our preconditioning algorithm. That is followed by a Fourier analysis,
confirmed by numerical experiments, that helps to identify and characterize the cir-
cumstances under which rapid convergence can be expected. The following section
presents numerical results and measurements for a realistic problem to show that, in
practice, our preconditioner is effective and that solutions can be computed efficiently.
We conclude the paper with a few summary remarks and make recommendations for
future investigation.

2. The P1 Equations. The P1 equations are a system of first-order partial
differential equations for the zeroth and first angular moments of the angular flux
which are known as the scalar flux and current, respectively. Briefly, they can be
derived by expanding the angular dependence of the flux, the quantity of interest in
the Boltzmann transport equation, in a series of the spherical harmonics functions
[14]. The expansion is substituted into the transport equation and angular moments
of the transport equation are taken. Using the addition formula for the spherical
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harmonics gives a system of differential equations for the angular moments of the
flux. The PL equations are formed by truncating this system at order L to arrive
at a coupled system of L + 1 equations for the L + 1 angular moments. Taking
L = 1 gives the P1 equations. Thus, the P1 equations can be looked at as an angular
Galerkin approximation to the transport equation based on a spherical harmonic trial
space of first order. We can select any one of several boundary conditions for the
PL equations that approximate the transport boundary conditions [31, 36]. Time and
energy dependence will be neglected in this paper.

In general geometry the P1 equations are

∇ · J(r) + σ0(r)Φ(r) = Q0(r) (2.1a)

1

3
∇Φ(r) + σ1(r)J(r) = Q1(r), (2.1b)

where Φ(r) represents the scalar flux and J(r) the current (a vector quantity) at a
position r. The cross sections σ0(r) and σ1(r) are nonnegative, usually nonzero, pa-
rameters that depend on the material in which the energetic particles of interest are
moving. They are defined in terms of the angular moments of the spherical harmonic
expansion of the interaction cross sections and they represent the absorption cross
section, σa(r), and the (transport corrected) total cross section σt(r), respectively.
The source terms Q0(r) and Q1(r) are the zeroth and first angular moments of an
inhomogeneous source. It is often assumed the source is emitting particles isotrop-
ically such that the vector Q1(r) is zero. The first expression in the P1 equations
is called the zeroth moment, or balance, equation. The second is a vector equation
whose component expression(s) are called the first moment equation(s). They will
consistently be written in this order. The steady state P1 equations are equivalent to
a second order diffusion equation and later we will explain how we take advantage of
this fact in solving the first-order system.

We will consider two types of boundary conditions: a type of mixed or Robin
boundary condition in the the case of a vacuum boundary condition or a boundary
source, or a homogeneous Neumann condition in the case of reflection on the boundary.

2.1. Two Dimensional Geometry. The P1 equations in two-dimensional ge-
ometry on the rectangular domain (x, y) ∈ [0, a]× [0, b] are

∂Jx

∂x
+

∂Jy

∂y
+ σa(x, y)Φ(x, y) = Q0(x, y) (2.2a)

1

3

∂Φ

∂x
+ σt(x, y)Jx(x, y) = 0 (2.2b)

1

3

∂Φ

∂y
+ σt(x, y)Jy(x, y) = 0, (2.2c)

where the current J(r) is a vector quantity whose x and y components are Jx(x, y)
and Jy(x, y), respectively, and where we have assumed the anisotropic component
of the source, Q1(r), is zero. Using the moment equations, Eqs. 2.2b and 2.2c, to
eliminate the currents in the balance equation, Eq. 2.2a, gives a diffusion equation for
the scalar flux

−
∂

∂x

(

D(x, y)
∂Φ

∂x

)

−
∂

∂y

(

D(x, y)
∂Φ

∂y

)

+ σa(x, y)Φ(x, y) = Q0(x, y), (2.3)

where D(x, y) =
(

3σt(x, y)
)−1

is the diffusion coefficient.
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One type of boundary conditions for the P1 equations is of mixed type, known
in the transport community as Marshak boundary conditions [14]. In the case of
a vacuum boundary condition or a constant isotropic incident boundary source, the
flows of inwardly and outwardly directed particles through the boundary surface rs

can be specified in terms of the fundamental unknowns, Φ(rs) and J(rs). The Marshak
boundary conditions express a fixed relationship between the two quantities. They
are an approximation to the transport boundary conditions consistent with the P1

approximation of the transport equation. Assuming a source or vacuum condition
along the entire length of any of the four sides of the problem, the Marshak conditions
are

1

4
Φ(0, y) +

1

2
Jx(0, y) = J+

L ,
1

4
Φ(a, y)−

1

2
Jx(a, y) = J−

R , y ∈ [0, b], (2.4a)

1

4
Φ(x, 0) +

1

2
Jx(x, 0) = J+

B ,
1

4
Φ(x, b)−

1

2
Jx(x, b) = J−

T , x ∈ [0, a], (2.4b)

where the values J+
L , J−

R , J+
B and J−

T represent the (isotropic) source of particles enter-
ing a problem through the left, right, bottom and top boundary surfaces, respectively.
They are zero in the case of a vacuum.

Reflective (homogeneous Neumann) boundary conditions physically represent a
zero particle flow condition, that is,

Jx(0, y) = 0, Jx(a, y) = 0, y ∈ [0, b], (2.5a)

Jy(x, 0) = 0, Jy(x, b) = 0, x ∈ [0, a]. (2.5b)

Source or vacuum boundary conditions for the diffusion equation are obtained by
using Eqs. 2.2b and 2.2c to eliminate the currents in Eqs. 2.4:

1

4
Φ(0, y)−

1

2
D(0, y)

∂Φ

∂x

∣

∣

∣

∣

∣

x=0

= J+
L ,

1

4
Φ(a, y) +

1

2
D(a, y)

∂Φ

∂x

∣

∣

∣

∣

∣

x=a

= J−
R , y ∈ [0, b],

(2.6a)

1

4
Φ(x, 0)−

1

2
D(x, 0)

∂Φ

∂y

∣

∣

∣

∣

∣

y=0

= J+
B ,

1

4
Φ(x, b) +

1

2
D(x, b)

∂Φ

∂y

∣

∣

∣

∣

∣

y=b

= J−
T , x ∈ [0, a].

(2.6b)

Reflection conditions are simply

∂Φ

∂x

∣

∣

∣

∣

∣

x=0

= 0,
∂Φ

∂x

∣

∣

∣

∣

∣

x=a

= 0, y ∈ [0, b], (2.7a)

∂Φ

∂y

∣

∣

∣

∣

∣

y=0

= 0,
∂Φ

∂y

∣

∣

∣

∣

∣

y=b

= 0, x ∈ [0, a]. (2.7b)

3. Discretization of the P1 Equations. We will now describe the DFE dis-
cretization of P1 system of equations. We use a Galerkin finite element method with
bilinear basis functions and assume piecewise constant cross sections and distributed
sources (material properties). Discontinuities are introduced using physical principles.
The coefficient matrix is “lumped” by approximating integrations with the trapezoidal
rule. We employ a standard (SPD) CFE discretization of the diffusion equation that
forms the basis of our two-level preconditioner. We will describe how to derive this
discretization directly from the DFE P1 equations.
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3.1. Bilinear Discontinuous Galerkin Finite Elements. Dividing the do-
main [0, a] × [0, b] into discrete points xi, i = 0, Nx, and yj , j = 0, Ny, defines a two-
dimensional grid of Nx spatial mesh cells of widths hi, i = 1, Nx, in the x–dimension
and Ny spatial mesh cells of widths kj , j = 1, Ny, in the y–dimension. Piecewise
constant cross sections σt,i,j , σa,i,j , are given for i = 1, Nx, j = 1, Ny.

Reference to Fig. 1 should help in visualizing the two-dimensional DFE discretiza-
tion that we present now. On a mesh cell (i, j), the following bilinear approximations
are made for the scalar flux and the x and y current components:

Φi,j(x, y) = ΦLB,i,jBLB(x, y) + ΦRB,i,jBRB(x, y)

+ ΦLT,i,jBLT (x, y) + ΦRT,i,jBRT (x, y) (3.1a)

Jx
i,j(x, y) = Jx

LB,i,jBLB(x, y) + Jx
RB,i,jBRB(x, y)

+ Jx
LT,i,jBLT (x, y) + Jx

RT,i,jBRT (x, y) (3.1b)

Jy
i,j(x, y) = Jy

LB,i,jBLB(x, y) + Jy
RB,i,jBRB(x, y)

+ Jy
LT,i,jBLT (x, y) + Jy

RT,i,jBRT (x, y). (3.1c)

The bilinear basis functions are defined by compositions of one dimensional linear
Lagrange functions on a cell. They have the property that they are unity in their
respective corners (“L” meaning left, “R” meaning right, “B” meaning bottom, and
“T” meaning top) and zero in the other three corners. Therefore, the functions in
Eqs. 3.1 take on the value of the corresponding expansion coefficient when evaluated
at a corner of the cell.

y

y

xii−1

j−1

j

x

RB

RTLT

LB

(i, j)(i−1, j) (i+1, j)

(i, j+1)

(i, j−1)

Fig. 1. Mesh cell (i, j) illustrating coupling to neighboring cells. Locations of the
relevant DFE unknowns are indicated by • symbols surrounding the vertices.
The scalar fluxes of the CFE discretization reside on the vertices, indicated
by the × symbols.

In the standard Galerkin procedure, we substitute Eqs. 3.1 into Eqs. 2.2 and take
inner products with respect to the basis functions to get the following weak form for
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the discrete solution:

(

Bf (xi, y), Jx
b (xi, y)

)

y
−

(

Bf (xi−1, y), Jx
b (xi−1, y)

)

y
−

(∂Bf

∂x
, Jx

i,j

)

xy

+
(

Bf (x, yj), Jy
b (x, yj)

)

x
−

(

Bf (x, yj−1), Jy
b (x, yj−1)

)

x
−

(∂Bf

∂y
, Jy

i,j

)

xy

+ σa,i,j

(

Bf , Φi,j

)

xy
=

(

Bf , Q0

)

xy
,

(3.2a)

1

3

(

(

Bf (xi, y), Φb(xi, y)
)

y
−

(

Bf (xi−1, y), Φb(xi−1, y)
)

y
−

(∂Bf

∂x
, Φi,j

)

xy

)

+ σt,i,j

(

Bf , Jx
i,j

)

xy
= 0,

(3.2b)

1

3

(

(

Bf (x, yj), Φb(x,yj)
)

x
−

(

Bf (x, yj−1), Φb(x, yj−1)
)

x
−

(∂Bf

∂y
, Φi,j

)

xy

)

+ σt,i,j

(

Bf , Jy
i,j

)

xy
= 0,

(3.2c)

where any of the four basis functions in Eqs. 3.1 can be represented by Bf (x, y) for
f = LB,RB,LT , or RT . The inner products above are computed for each cell (i, j)
over x ∈ [xi−1, xi] and and y ∈ [yj−1, yj ], that is,

(

u, v
)

x
=

∫ xi

xi−1

u(x) v(x) dx, (3.3a)

(

u, v
)

y
=

∫ yj

yj−1

u(y) v(y) dy, (3.3b)

(

u, v
)

xy
=

∫ xi

xi−1

∫ yj

yj−1

u(x, y) v(x, y) dy dx. (3.3c)

We can lump the equations by evaluating these integrals approximately, using with
the trapezoidal rule in each dimension:

(

u, v
)

x
=

∆xi

2

[

u(xi−1) v(xi−1) + u(xi) v(xi)
]

(3.4a)

(

u, v
)

y
=

∆yj

2

[

u(yj−1) v(yj−1) + u(yj) v(yj)
]

(3.4b)

(

u, v
)

xy
=

∆xi∆yj

2

[

u(xi−1, yj−1) v(xi−1, yj−1) + u(xi, yj−1) v(xi, yj−1)

+ u(xi−1, yj) v(xi−1, yj) + u(xi, yj) v(xi, yj)
]

. (3.4c)

3.2. DFE Discretization of the P1 Equations. We used Green’s Theorem
in writing the weak form given in Eqs. 3.2, giving rise to the “boundary” terms in
those expressions, denoted by the subscript b. Because basis functions from adjacent
cells overlap along the cell edges these terms are not uniquely defined. A unique
definition can generally be obtained by “upwinding”. Upwinding not only defines the
cell edge values but also produces a discretization that is discontinuous. Upwinding
is implemented naturally when flow directions can be associated with the variables of
interest. In that case, the boundary terms are defined in terms of the flows into and
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out of a cell through the cell edges. However, while there is no particular flow direction
associated with the scalar flux or currents in the P1 equations, there are several ways
we can relate the scalar flux and current to incoming and outgoing flows through a
cell edge. For instance, we could diagonalize the (hyperbolic) P1 equations with an
eigenvector decomposition, as is done in upwinded Godunov methods, reformulating
the problem in terms of so called characteristic variables, to which can be associated
well defined direction of flow [18, 25].

Alternatively, we can use the physical interpretation of the P1 approximation,
which assumes the angular dependence of the full particle distribution is at most
linear in angle [7]. Partial currents are defined as a weighted projection of the particle
distribution flowing in through a surface or out through a surface, relative to the
surface normal. The partial currents can be used to decompose the particle flow
through a surface into two directions, the flow of inwardly directed particles and
the flow of outwardly directed particles. This is the same as the Marshak boundary
conditions, except that the partial currents are used to relate Φ(x, y) and J(x, y) to
the particle flows through a cell edge instead of through the boundary.

We will describe this in detail for rectangular cells. First we write down the partial
currents at a surface at x = x̂, in the positive and negative x–direction, respectively,
as

Jx+(x̂, y) =
1

4
Φ(x̂, y) +

1

2
Jx(x̂, y) (3.5a)

Jx−(x̂, y) =
1

4
Φ(x̂, y)−

1

2
Jx(x̂, y), (3.5b)

We can then write the “boundary” terms for the scalar flux and current at x = x̂ as

Φb(x̂, y) = 2
[

Jx+(x̂, y) + Jx−(x̂, y)
]

(3.6a)

Jx
b (x̂, y) = Jx+(x̂, y)− Jx−(x̂, y). (3.6b)

Now, the partial currents at a surface at y = ŷ in the positive and negative y–directions
are, respectively,

Jy+(x, ŷ) =
1

4
Φ(x, ŷ) +

1

2
Jy(x, ŷ) (3.7a)

Jy−(x, ŷ) =
1

4
Φ(x, ŷ)−

1

2
Jy(x, ŷ). (3.7b)

Similarly, we can then write the boundary terms for the scalar flux and current at
y = ŷ as

Φb(x, ŷ) = 2
[

Jy+(x, ŷ) + Jy−(x, ŷ)
]

(3.8a)

Jy
b (x, ŷ) = Jy+(x, ŷ)− Jy−(x, ŷ). (3.8b)

Because Eqs. 3.5 and 3.7 and the Marshak boundary conditions, Eqs. 2.4, come
from the same approximation, we can easily incorporate boundary conditions into our
discretization. First, we define the factors ξk as follows. Letting the subscript f take
on the values L for the left boundary (x = 0), R for the right (x = a), B for the
bottom (y = 0), and T for the top (y = b), we set ξk according to

ξk =











1, for reflective boundary conditions

0, for vacuum boundary condition

or if the cell edge is not on the domain boundary
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These factors, together with Eq. 3.5 through Eq. 3.8, are used to express the flow of
particles through the surfaces of a cell (i, j). The flow for particles emerging from a
cell (i, j) in the negative x–direction through x̂ = xi−1 and in the positive x–direction
through x̂ = xi are, respectively, for y ∈ [yj−1, yj ]

Jx−(xi−1, y) =
1

4
Φi,j(xi−1, y)−

1

2
Jx

i,j(xi−1, y) (3.9a)

Jx+(xi, y) =
1

4
Φi,j(xi, y) +

1

2
Jx

i,j(xi, y). (3.9b)

The flow for particles entering cell (i, j) in the positive x–direction through x̂ = xi−1

and in the negative x–direction x̂ = xi are given in terms of the bilinear expansions
for the quantities in the adjacent cells on the left and right, respectively,

Jx+(xi−1, y) = (1− ξL)

(

1

4
Φi−1,j(xi−1, y)−

1

2
Jx

i−1,j(xi−1, y)

)

+ ξLJx−(xi−1, y)

(3.10a)

Jx−(xi, y) = (1− ξR)

(

1

4
Φi+1,j(xi, y) +

1

2
Jx

i+1,j(xi, y)

)

+ ξRJx+(xi, y). (3.10b)

The expressions in Eqs. 3.9 and 3.10 are substituted into Eqs. 3.6 for x̂ = xi−1 and
then for x̂ = xi which in turn define the cell edge values Φb(xi−1, y), Φb(xi, y) and
Jx

b (xi−1, y), Jx
b (xi, y) in Eqs. 3.2. The flow for particles emerging from cell (i, j) in

the negative y–direction through ŷ = yj−1 and in the positive y–direction ŷ = yj in
terms bilinear expansions for the quantities are, respectively, for x ∈ [xi−1, xi]

Jy−(x, yj−1) =
1

4
Φi,j(x, yj−1)−

1

2
Jy

i,j(x, yj−1) (3.11a)

Jy+(x, yj) =
1

4
Φi,j(x, yj) +

1

2
Jy

i,j(x, yj). (3.11b)

The flow for particles entering cell (i, j) in the positive y–direction through ŷ = yj−1

and in the negative y–direction ŷ = yj are given in terms of the bilinear expansions
for the quantities in the adjacent cells above and below, respectively,

Jy+(x, yj−1) = (1− ξB)

(

1

4
Φi,j−1(x, yj−1)−

1

2
Jy

i,j−1(x, yj−1)

)

+ ξBJy−(x, yj−1)

(3.12a)

Jy−(x, yj) = (1− ξT )

(

1

4
Φi+1,j(x, yj) +

1

2
Jx

i+1,j(x, yj)

)

+ ξT Jy+(x, yj). (3.12b)

The expressions in Eqs. 3.11 and 3.12 are substituted into Eqs. 3.8 for ŷ = yj−1 and
ŷ = yj which in turn define the cell edge values Φb(x, yj−1), Φb(x, yj), and Jy

b (x, yj−1),
Jy

b (x, yj), in Eqs. 3.2.
Using these definitions of the cell edge values, together with the bilinear expan-

sions Eqs. 3.1, a discontinuous discretization is derived for each cell consisting of
twelve equations (four equations for the balance equation and four for each of the
two first moment equations) in twelve unknowns (four for the scalar flux, and four for
each of the two current components). For a cell (i, j), the solution vector is ordered
as

x̄i,j = [ΦLB , ΦRB , ΦLT , ΦRT , Jx
LB , Jx

RB , Jx
LT , Jx

RT , Jy
LB , Jy

RB , Jy
LT , Jy

RT ]T .
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We order the grid in rows, left-to-right, starting from the bottom so that the solution
vector is stored as

x̄ = [x̄1,1, x̄2,1, . . . , x̄Nx,1, x̄1,2, x̄2,2, . . . , x̄Nx,2, . . . , x̄1,Ny
, x̄2,Ny

, . . . , x̄Nx,Ny
]T .

(3.13)
The two-dimensional lumped, bilinear DFE discretization of the P1 equations can be
written in matrix form as follows.

A1,1
i,j =





















αL,B 0 0 0

0 αR,B 0 0

0 0 αL,T 0

0 0 0 αR,T





















A2,2
i =





















βL 0 0 0

0 βR 0 0

0 0 βL 0

0 0 0 βR





















A3,3
j =





















γB 0 0 0

0 γB 0 0

0 0 γT 0

0 0 0 γT





















A1,2
j =





















ξLkj kj 0 0

−kj −ξRkj 0 0

0 0 ξLkj kj

0 0 −kj −ξRkj





















A2,1
j =





















−ξLkj kj 0 0

−kj ξRkj 0 0

0 0 −ξLkj kj

0 0 −kj ξRkj





















A1,3
i =





















ξBhi 0 hi 0

0 ξBhi 0 hi

−hi 0 −ξT hi 0

0 −hi 0 −ξT hi





















A3,1
i =





















−ξBhi 0 hi 0

0 −ξBhi 0 hi

−hi 0 ξT hi 0

0 −hi 0 ξT hi





















Ai,j =















1
8A

1,1
i,j

1
4A

1,2
j

1
4A

1,3
i

1
6A

2,1
j

1
6A

2,2
i 0

1
6A

3,1
i 0 1

6A
3,3
j















(3.14)
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Si =





















0 0 −hi 0

0 0 0 −hi

0 0 0 0

0 0 0 0





















Rj =





















0 −kj 0 0

0 0 0 0

0 0 0 −kj

0 0 0 0





















Wj =













1
8Rj

1
4Rj 0

1
12Rj

1
6Rj 0

0 0 0













Xj =













1
8R

T
j − 1

4R
T
j 0

− 1
12R

T
j

1
6R

T
j 0

0 0 0













(3.15)

Yi =













1
8Si 0 1

4Si

0 0 0

1
12Si 0 1

6Si













Zi =













1
8S

T
i 0 − 1

4S
T
i

0 0 0

− 1
12S

T
i 0 1

6S
T
i













(3.16)

The auxiliary quantities appearing in the matrices are defined as

αf,g = 2σa,i,jhikj + (1− ξf )kj + (1− ξg)hi (3.17a)

βf = 3σt,i,jhi + 2(1 + ξf ) (3.17b)

γf = 3σt,i,jkj + 2(1 + ξf ). (3.17c)

Following the global cell ordering given in Eq. 3.13, the matrix is filled in 12 × 12
blocks according to

Ai,j x̄i,j + Wj x̄i−1,j + Xj x̄i+1,j + Yix̄i,j−1 + Zix̄i,j+1 = b̄i,j , (3.18)

the cells being coupled in a block, five-point stencil as shown in Fig. 1.
We allow the isotropic source to be specified by piecewise constants Q0,i,j , i =

1, Nx, j = 1, Ny, on each cell. Then the bilinear source representation gives the
following source vector, b̄i,j , for a cell (i, j):

b̄i,j =
1

4
hikj [Q0,i,j , Q0,i,j , Q0,i,j , Q0,i,j , 0, 0, 0, 0, 0, 0, 0, 0]T . (3.19)

Particles can also enter the system through the boundaries. We consider only isotropi-
cally emitted sources of particles. We compute the values J+

L , J−
R , J+

B and J−
T , which is

done by evaluating the incoming partial currents that correspond to isotropic bound-
ary sources. The incident partial currents are then used in the boundary conditions,
Eqs. 2.4. They are assumed constant along any of the faces for which such boundary
conditions are specified. If i or j lies on the boundary of the problem, the quantities
in Eq. 3.18 corresponding to nonexistent cells are replaced by the source terms J+

L ,
J−

R , J+
B and J−

T and moved to the right-hand side of Eq. 3.18. Thus source boundary
conditions enter naturally into the discrete equations and the source vector is modified
as follows. If a source is present on the left or right face,

b̄1,j = b̄1,j + J+
L kj [

1

2
,

1

2
, 0, 0,

1

3
,

1

3
, 0, 0, 0, 0, 0, 0]T (3.20a)

b̄Nx,j = b̄Nx,j + J−
R kj [0, 0,

1

2
,

1

2
, 0, 0, −

1

3
, −

1

3
, 0, 0, 0, 0]T , (3.20b)
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respectively, for all j = 1, Ny. If a source is present on the bottom or top face,

b̄i,1 = b̄i,1 + J+
B hi[

1

2
, 0,

1

2
, 0, 0, 0, 0, 0,

1

3
, 0,

1

3
, 0]T (3.21a)

b̄i,Ny
= b̄i,Ny

+ J−
T hi[0,

1

2
, 0,

1

2
, 0, 0, 0, 0, 0, −

1

3
, 0, −

1

3
]T , (3.21b)

respectively, for all i = 1, Nx.
In this paper, we chose a cell-wise ordering over the problem domain followed by

the unknowns Φ at the vertices and then J at the vertices. If we instead ordered the
problems first by Φ over all cells and then vertices, followed by the vector J over all
cells and then vertices, we could write the linear system in the nonsymmetric 2 × 2
block form

[

Aa −AT
0

1
3A0 At

] [

Φ
J

]

=

[

0
g

]

. (3.22)

We omit the details of the blocks for brevity, although it is possible to deduce their
meaning by comparison with Eqs. 2.1 or 2.2. We simply wish to point out this more
traditional saddle point formulation that arises from mixed finite element methods
for elliptic operators. Such problems have been well studied; see [10, 12, 15, 33, 34], for
example. We have observed that the submatrices At and Aa are symmetric positive
definite (SPD) so that the full linear system is positive definite. The linear system
can then also be written in the symmetric form

[

−Aa AT
0

A0 3At

] [

Φ
J

]

=

[

−g
0

]

. (3.23)

In this case the linear system is indefinite which we can solve with the iterative
methods SYMMLQ or MINRES. Both methods are computationally efficient and
guaranteed to converge but they require SPD preconditioners. Unfortunately we will
see that our preconditioner is nonsymmetric.

3.3. CFE Discretization of the Diffusion Equation. The CFE discretiza-
tion of the diffusion equation is derived by combining the DFE P1 equations to obtain
a discrete equation for the scalar flux. We will illustrate the procedure by manipulat-
ing the first of Eqs. 3.2 for f = LB with the right-hand side set to an arbitrary term
corresponding to the discontinuous scalar flux:

1

4
σa,i,jhikjΦLB,i,j +

1

8
kj

(

ΦLB,i,j − ΦRB,i−1,j

)

+
1

8
hi

(

ΦLB,i,j − ΦLT,i,j−1

)

+
1

4
kj

(

Jx
RB,i,j − Jx

RB,i−1,j

)

+
1

4
hi

(

Jy
LT,i,j − Jy

LT,i,j−1

)

= r0
LB,i,j .

(3.24)

The rest of Eqs. 3.2 will also have their right-hand sides set to discontinuous unknowns.
In practice, the right-hand side is an unspecified vector with the same ordering as the
discontinuous unknowns.

The first step is to allow the discontinuous quantities from the four cells surround-
ing a grid vertex to take on a single value. Recall that the four cell vertices of a cell
(i, j) are located at (xi−1, yj−1), (xi, yj−1), (xi−1, yj), and (xi, yj) corresponding to
the lower-left, lower-right, upper-left and upper-right corners, respectively. Then, for
example, the following assignments are made for the lower-left cell vertex at i−1, j−1:

ΦLB,i,j ,ΦRB,i−1,j ,ΦRT,i−1,j−1,ΦLT,i,j−1 −→ ϕi−1,j−1, (3.25a)
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Jx
LB,i,j , J

x
RB,i−1,j , J

x
RT,i−1,j−1, J

x
LT,i,j−1 −→ jx

i−1,j−1, (3.25b)

Jy
LB,i,j , J

y
RB,i−1,j , J

y
RT,i−1,j−1, J

y
LT,i,j−1 −→ jy

i−1,j−1. (3.25c)

These and similar assignments are made for the four vertices on a cell (i, j) in all
twelve of the discontinuous P1 equations in Eqs. 3.2. Our example, Eq. 3.24, becomes

1

4
σa,i,jhikjϕi−1,j−1 +

1

4
kj

(

jx
i,j−1− jx

i−1,j−1

)

+
1

4
hi

(

jy
i−1,j− jy

i−1,j−1

)

= r0
LB,i,j (3.26)

The second step involves the four balance equations only. After having substituted
for the continuous quantities, the balance equations are “shifted” to the vertex i, j.
That is, the balance equation for f = RT is unchanged, while the balance equation
for f = RB is written for j = j + 1 and that for f = LT is written for i = i + 1. Our
sample equation for f = LB is written for i = i + 1, j = j + 1 and Eq. 3.26 becomes

1

4
σa,i+1,j+1hi+1kj+1ϕi,j +

1

4
kj+1

(

jx
i+1,j − jx

i,j

)

+
1

4
hi+1

(

jy
i,j+1 − jy

i,j

)

= r0
LB,i+1,j+1.

(3.27)
The third step is to manipulate the moment equations, with the continuous values
already substituted, to find expressions for the continuous currents in terms of the
continuous scalar fluxes in order to eliminate the currents in the four balance equa-
tions. For our example, we first add the x–component current equations for f = LT
and f = RT ,

1

3

(

ϕi,j−1 − ϕi−1,j−1

)

+
1

2
σtr,i,jhi

(

jx
i,j−1 + jx

i−1,j−1

)

= rx
LB,i,j + rx

RB,i,j , (3.28a)

and the y–component current equations for f = RB and f = RT ,

1

3

(

ϕi−1,j − ϕi−1,j−1

)

+
1

2
σtr,i,jkj

(

jy
i−1,j + jy

i−1,j−1

)

= ry
LB,i,j + ry

LT,i,j . (3.28b)

The previous two expressions are solved for jx
i,j+1 and jy

i+1,j , respectively,

jx
i,j−1 = −jx

i−1,j−1 +
2

(3σtr,i,jhi)

(

ϕi−1,j−1 − ϕi,j−1

)

+
2

(σtr,i,jhi)

(

rx
LB,i,j + rx

RB,i,j

)

(3.29a)

jy
i−1,j = −jy

i−1,j−1 +
2

(3σtr,i,jkj)

(

ϕi−1,j−1 − ϕi−1,j

)

+
2

(σtr,i,jkj)

(

ry
LB,i,j + ry

LT,i,j

)

,

(3.29b)
which are both shifted by setting i = i + 1, j = j + 1:

jx
i+1,j = −jx

i,j +
2

(3σtr,i+1,j+1hi+1)

(

ϕi+1,j − ϕi,j

)

+
2

(σtr,i+1,j+1hi+1)

(

rx
LB,i+1,j+1 + rx

RB,i+1,j+1

)

(3.30a)

jy
i,j+1 = −jy

i,j +
2

(3σtr,i+1,j+1kj+1)

(

ϕi,j − ϕi,j+1

)

+
2

(σtr,i+1,j+1kj+1)

(

ry
LB,i+1,j+1 + ry

LT,i+1,j+1

)

.

(3.30b)
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These expressions are then substituted into Eq. 3.27 to obtain

1

4
σa,i+1,j+1hi+1kj+1ϕi,j −

1

2
kj+1j

x
i,j −

1

2
hi+1j

y
i,j

+
hi+1

(6σtr,i+1,j+1kj+1)

(

ϕi,j − ϕi,j+1

)

+
kj+1

(6σtr,i+1,j+1hi+1)

(

ϕi,j − ϕi+1,j

)

= r0
LB,i+1,j+1

−
kj+1

(2σtr,i+1,j+1hi+1)

(

rx
LB,i+1,j+1 + rx

RB,i+1,j+1

)

−
hi+1

(2σtr,i+1,j+1kj+1)

(

ry
LB,i+1,j+1 + ry

LT,i+1,j+1

)

.

(3.31)

After the remaining three balance equations are similarly transformed, the fourth
and final step is to sum the four balance equations. The currents cancel, giving an
expression for the scalar fluxes at the vertices. The resulting right-hand side defines
the operator for projecting a vector from the DFE trial space onto the CFE trial
space. Presentation of the projection matrices is deferred for the time being. We
simply write the standard lumped, vertex centered, five-point CFE diffusion equation
stencil at vertex (i, j) with some source term si,j :

−
1

2

(

Di−1,j−1

ci−1,j−1
+

Di−1,j

ci−1,j

)

ϕi−1,j −
1

2

(

ci−1,j−1Di−1,j−1 + ci,j−1Di,j−1

)

ϕi,j−1

+
1

4

(

ci−1,j−1Di−1,j−1 +
Di−1,j−1

ci−1,j−1
+ 2τi−1,j−1 + ci−1,jDi−1,j +

Di−1,j

ci−1,j

+ 2τi−1,j

+ ci,j−1Di,j−1 +
Di,j−1

ci,j−1
+ 2τi,j−1 + ci,jDi,j +

Di,j

ci,j

+ 2τi,j

)

ϕi,j

−
1

2

(

Di,j−1

ci,j−1
+

Di,j

ci,j

)

ϕi+1,j −
1

2

(

ci−1,jDi−1,j + ci,jDi,j

)

ϕi,j+1 = si,j ,

(3.32)
where ci,j = hi/kj , τi,j = σa,i,jhikj , and Di,j = 1/(3σt,i,j),

A vacuum condition is used when the continuous diffusion equations are used as
a preconditioner and there is a vacuum or isotropic source boundary condition on
the P1 equations. Reflective conditions are used if reflection is specified for the P1

equations. The matrix is SPD in the presence of either of these boundary conditions.

4. Preconditioning the Iterative Solution. We use a preconditioned Krylov
iterative method to solve the nonsymmetric linear system Ax̄ = b̄, assembled from the
DFE discretization of the P1 equations. Iterative solution techniques are preferred
because A will sparse and direct methods are impractical for large problems. After
extensive testing with several Krylov solvers, we found GMRES(m) to be the most
robust and fastest converging transpose free, nonsymmetric Krylov method for this
application [35]. We will not report results with other methods in this paper. An
advantage of using Krylov solvers is that only matrix-vector products need to be
computed. Compact matrix storage schemes can therefore be used to reduce memory
requirements. This also makes specialized or parallel-distributed methods easy to
implement.

Convergence can be improved by (left) preconditioning the equivalent linear sys-
tem M−1Ax̄ = M−1b̄, where the matrix M−1 in some sense approximates the inverse
of A. If M−1A is “close” to the identity, convergence is accelerated by clustering
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and/or compressing the eigenvalue spectrum of A. The matrix M does not nec-
essarily have to formed or stored nor does the inverse M−1 necessarily have to be
computed. This is because the Krylov algorithms only require that a preconditioner
return the preconditioned vector z̄. This can be calculated by computing z̄ = M−1r̄
or, equivalently, by solving the system Mz̄ = r̄ for z̄. This is referred to as the
“action” of the preconditioner on a vector. Preconditioners based on the solution to
another related, and simpler, linear system might also be used, which may in turn
require preconditioning as well.

Preconditioning depends on finding an appropriate M whose action can be com-
puted efficiently. The search for effective preconditioners can often be more of an art
than a science. For instance, when the matrix represents a discretized set of of dif-
ferential equations on some domain or in some regime, we can take advantage of the
physics of the problem being solved to help identify effective preconditioners. Note
that we have only preconditioned on the left. This is because we have found that our
system of equations is scaled in such a way that right preconditioning can actually
increase the condition number in some cases and left preconditioning is effective for
a wide range of problems, at least for the preconditioner we will describe here.

As the optical thickness of the cells increases in transport problems that are
highly diffusive, iterative convergence degrades and discontinuous solutions tend to
become continuous at the cell interfaces. This observation led us to believe that a
linear, continuous finite element discretization of the diffusion equation should be an
effective preconditioner for the DFE discretization of the P1 equations. The standard
CFE diffusion equation is the basis of our preconditioning algorithm. A DFE vector
must first first projected from the DFE trial space onto the lower dimensional CFE
trial space. The CFE diffusion equations are then solved with this projected vector
as a source and the solution is interpolated back to the DFE trial space. In thick,
diffusive problems the CFE diffusion equations should be a good approximation to the
DFE P1 equations solution and the preconditioner should be effective. The method
should be efficient because the CFE discretization involves only the scalar fluxes on
the vertices.

We view the preconditioner as “solving” the system Mz̄ = r̄ for r̄, z̄ ∈ R
n. The

procedure is shown in Algorithm 1.

Algorithm 1. Two-Level Preconditioner

z̄ ← 0

s̄← r̄ −Az̄

z̄ ← z̄ + ω1Ã
−1s̄

s̄← r̄ −Az̄

z̄ ← z̄ + C−1s̄

s̄← r̄ −Az̄

z̄ ← z̄ + ω2Ã
−1s̄

The bottom of the two-level algorithm consists of the operations that make up the
operator C−1, that is, C−1 = QF−1P. The DFE P1 equations have twelve unknowns
per cell, so the total number of unknowns in the problem is n = 12NxNy. The
CFE diffusion equation matrix is of lower dimension (rank) with unknowns located
at the cell vertices such that F ∈ R

m×m, where m = (Nx + 1)(Ny + 1). It is there-
fore necessary to project from the higher dimensional DFE representation onto the
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lower dimensional CFE representation and interpolate back. The projection operator
P ∈ R

m×n results from the manipulations described above in determining the CFE
discretization of the diffusion equation from the discontinuous P1 equations. The
right-hand side in those expression is now represented by the vector s̄ in Algorithm 1.
The operator Q ∈ R

n×m interpolates the solution on the from the CFE representation
on the vertices back onto the DFE representation. These operators will be discussed
in greater detail below.

The matrix F is a relatively small, sparse, banded SPD matrix that can be (in-
exactly) solved efficiently with the CG algorithm. Currently it is preconditioned only
with diagonal scaling. For larger problems and parallel implementations more sophis-
ticated approaches like sparse approximate inverses [8] or a multigrid method [11]
could be considered. We found that the time spent solving the “inner” CFE diffusion
problem can influence on the optimality of the overall method. It is also possible that
the convergence rate and the tolerance of the inner solution can affect the convergence
of the “outer” iterations [9, 16]. As is commonly done with problems involving inner
and outer iterations, the inner convergence tolerance could be scaled by the “size” of
the outer residual to improve overall efficiency. We plan to investigate these issues in
the future.

In Algorithm 1, the CFE diffusion solution is preceded and followed by smoothing
operations, where the matrix Ã represents some simple approximation to A. The first
three steps of the preconditioning algorithm can be collapsed into a single operation,
but we present it in this form to make clear the V-cycle nature of the two-level
algorithm. Smoothing is necessary to avoid the possibility of encountering a vector in
the null space of the operator C̃, denoted by N(C̃), which could possibly lead to false
convergence. This is of concern because the null space has dimension dim(N(C̃)) =
n−m, which in our case can be quite large.

The choice of smoothers can influence the effectiveness of the preconditioner. In
thick, diffusive problems we can simply choose Ã = I where I is the n × n identity,
which corresponds to a simple Richardson iteration. We found that something more
sophisticated was needed for problems with thin or high aspect ratio cells. In this
case we use block Jacobi smoothers, either in the form of block cell relaxations or
x–line and y–line relaxations. Which of these is best depends on the problem. We
will determine this not only by the effectiveness and efficiency of the relaxations but
also by their potential for improving the overall solution time when applied to large
problems or implemented in parallel.

The block cell Jacobi relaxation uses Ã = BD, where BD ∈ R
n×n is the block

diagonal of A. Each block consists is 12× 12, corresponding to the unknowns on cell
(i, j). In the notation of the previous section,

BD = diag(Ai,j), i = 1, Nx, j = 1, Ny. (4.1)

This smoother is best suited for parallel, unstructured, three dimensional applications
but is not very effective for problems with thin cells or high aspect ratio cells. This
can be addressed with an x and y line relaxation smoother. In that case, Ã = Bxy,
where

B−1
xy =

1

2
B−1

x +
1

2
B−1

y . (4.2)

The matrix Bx is an Ny × Ny block diagonal matrix, each block consisting of an
Nx × Nx block tridiagonal matrix (of 12 × 12 blocks). Similarly, the matrix By is
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Ny × Ny block diagonal, each block being Nx × Nx block tridiagonal. Using the
notation of the previous section,

Bx = diag(Bj), j = 1, Ny, (4.3)

By = diag(Bi), i = 1, Nx, (4.4)

where

Bj =































A1,j Xj

Wj A2,j Xj 0

. . .

0 Wj A(Nx−1),j Xj

Wj ANx,j































Bi =































Ai,1 Zi

Yi Ai,2 Zi 0

. . .

0 Yi Ai,(Ny−1) Zi

Yi Ai,Ny































.

The block line smoother is clearly going to be less efficient than the block cell
smoother, in terms of both memory storage and execution time. On the other hand,
the block line smoother is more effective. There could problems for which the increased
cost per iteration is outweighed by a reduction in iteration counts. However, the
block line smoothers are more difficult to implement in parallel because lines of cells
would have to be divided among processors. Furthermore, on unstructured three
dimensional meshes, “lines” can only be generated based on the connectivity of the
mesh. A compromise might be to extend the block cell relaxations to include nearby
cells to improve convergence in the case of thin or high aspect ratio cells. This could
also be extended to include overlapping blocks like an additive Schwarz algorithm
[27].

Note that we have allowed the possibility of damping the pre- and post-smoothing
relaxations. When Ã = BD we take ω1 + ω2 = 1 and when Ã = Bxy we use
ω1 = ω2 = 1. As it stands, the preconditioner can be used as stand-alone iterative
solution algorithm whose convergence and stability can be easily analyzed. Although
we will not discuss the details of this analysis, it is what led us to use line relaxations
and to our choices for ω1 and ω2.

We will now discuss the details of projection and interpolation operators. The
projection operators arise from the derivations of the CFE discretization of the dif-
fusion equation with some DFE vector as a source term. The projection operator
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P ∈ R
m×n can be written by defining the following row vectors in R

4,

ν̄0
LB,i,j = [1, 0, 0, 0], ν̄0

RB,i,j = [0, 1, 0, 0],

ν̄0
LT,i,j = [0, 0, 1, 0], ν̄0

RT,i,j = [0, 0, 0, 1],

ν̄x
B,i,j =

kj

2
(σt,i,jhi)

−1
[1, 1, 0, 0], ν̄x

T,i,j =
kj

2
(σt,i,jhi)

−1
[0, 0, 1, 1]

ν̄y
L,i,j =

hi

2
(σt,i,jkj)

−1
[1, 0, 1, 0], ν̄y

R,i,j =
hi

2
(σt,i,jkj)

−1
[0, 1, 0, 1],

to construct the four row vectors, each in R
12,

ν̄LB,i,j =
[

ν̄0
LB,i,j ,−ν̄x

B,i,j ,−ν̄y
L,i,j

]

, ν̄RB,i,j =
[

ν̄0
RB,i,j , ν̄x

B,i,j ,−ν̄y
R,i,j

]

,

ν̄LT,i,j =
[

ν̄0
LT,i,j ,−ν̄x

T,i,j , ν̄y
L,i,j

]

, ν̄RT,i,j =
[

ν̄0
RT,i,j , ν̄x

T,i,j , ν̄y
R,i,j

]

,

which are used to define the matrices PB,j ,PT,j ∈ R
(Nx+1)×12Nx ,

PB,j =



































ν̄LB,1,j 0

ν̄RB,1,j ν̄LB,2,j

. . .
. . .

ν̄RB,Nx−1,j ν̄LB,Nx,j

0 ν̄RB,Nx,j



































PT,j =



































ν̄LT,1,j 0

ν̄RT,1,j ν̄LT,2,j

. . .
. . .

ν̄RT,Nx−1,j ν̄LT,Nx,j

0 ν̄RT,Nx,j



































such that the projection matrix is the (Ny + 1)×Ny block matrix

P =



































PB,1 0

PT,1 PB,2

. . .
. . .

PT,Ny−1 PB,Ny

0 PT,Ny



































. (4.5)
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The interpolation operator is represented by the matrix Q ∈ R
n×m. We call our

interpolation an “update” because the components of the vector corresponding to
the discontinuous scalar fluxes for the cells surrounding a vertex of the mesh are all
corrected with the same value of the continuous diffusion equation solution at that
vertex. The currents are not corrected. Define the following vectors in R

12,

µ̄LB,i,j = [1, 0, 0, 0, 0, . . . 0]T , µ̄RB,i,j = [0, 1, 0, 0, 0, . . . 0]T ,

µ̄LT,i,j = [0, 0, 1, 0, 0, . . . 0]T , µ̄RT,i,j = [0, 0, 0, 1, 0, . . . 0]T ,

to construct the matrices QB,j ,QT,j ∈ R
12Nx×(Nx+1),

QB,j =



































µ̄LB,1,j µ̄RB,1,j

0 µ̄LB,2,j µ̄RB,2,j

. . .
. . .

µ̄LB,Nx−1,j µ̄RB,Nx−1,j 0

µ̄LB,Nx,j µ̄RB,Nx,j



































QT,j =



































µ̄LT,1,j µ̄RT,1,j

0 µ̄LT,2,j µ̄RT,2,j

. . .
. . .

µ̄LT,Nx−1,j µ̄RT,Nx−1,j 0

µ̄LT,Nx,j µ̄RT,Nx,j



































such the interpolation matrix is the Ny × (Ny + 1) block matrix

Q =



































QB,1 QT,1

0 QB,2 QT,2

. . .
. . .

QB,Ny−1 QT,Ny−1 0

QB,Ny
QT,Ny



































. (4.6)

Multigrid or other multi-level methods often specify that the projection and interpola-
tion matrices are transposes of one another. We found that if enforcing symmetry by
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choosing one of the matrices to be the transpose of the other destroys the effectiveness
of our preconditioner.

Finally, note that we derived another interpolation based on the assumption that
partial currents on the faces of the cells can be written in terms of the CFE scalar
fluxes which may then be related to the discontinuous P1 equation quantities using
an approximation to the partial currents [1, 28, 37]. This interpolation is, however,
difficult to derive and complicated to evaluate especially in higher dimensions. But
we found that the simple interpolation presented here performed nearly as well as
these more expensive interpolation anyway. The interested reader can consult [28] for
more details.

5. Analysis and Numerical Experiments. Evidence of the effectiveness of
our preconditioning algorithm will be presented in the form of a Fourier analysis along
with measurements of the performance of an actual implementation. The methods
were implemented and executed on serial machines. We will indicate directions for ap-
plication of the algorithm to large problems on parallel computer platforms suggested
by results from the serial test program.

The anticipated convergence rates for the nonsymmetric Krylov methods are dif-
ficult to characterize and remain open questions [17]. If the preconditioned matrix
were positive definite, that is, if the matrix has an SPD symmetric part, then we could
bound the convergence rate of GMRES(m) based on the distribution of the eigenval-
ues of the symmetric part and the singular values of the preconditioned system [30].
Unfortunately, in our case A is nonsymmetric positive definite, but we found that
M−1A is not, in general, nonsymmetric positive definite. We are thus left without
an analytical bound on the convergence of GMRES(m) as well as the possibility that
the method might stagnate (though we have not seen this occur in practice). On the
other hand, we have found that we can get an idea of the relative convergence rates
that can be expected among problems with varying cell shapes and thicknesses by
calculating the condition number based on the ratio of the maximum and minimum
singular values of the preconditioned system for some small, model problems. These
condition numbers can be also be compared to those estimated by a Fourier analysis.

One issue of efficiency of the implementation should be noted. Both of the block
Jacobi smoothers were computed, inverted, and stored ahead of time, before the outer
iterations started. This storage overhead could be eliminated at the cost of additional
computations at every outer iteration, but this is extremely inefficient, especially for
the block line smoother.

5.1. Condition Numbers and Convergence of GMRES(m). We have com-
puted the full matrix for the preconditioned system of a problem with constant
material properties, keeping the number of mesh cells in each dimension constant,
Nx = Ny = 10. We will refer to this as the “fixed-size problem”. The number of
unknowns is n = 1200. By varying the physical dimensions of the problem domain
we can see how the condition number and iterative convergence depends on mesh
thickness and aspect ratio. The total cross section is 1cm−1 and the scattering ratio
is 0.99990. The dimensions of the problem are taken to be 10∆x(cm) × 10∆y(cm).
The ratio of the largest and smallest singular values gives the condition number in
the 2–norm. The measured values for problems without preconditioning as well as for
preconditioned problems are shown below. In all the tabulated results presented in
this section, numbers written in the form x.x(y) are to be interpreted as x.x · 10y.

It is also possible to estimate the condition number of the preconditioned system
with a discrete Fourier analysis. We assume a discrete Fourier ansatz of the form
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feiλxmheiλynk for each the twelve DFE unknowns on a cell (m,n) (a different f
for each unknown on the cell) in terms of the cell width h and k assuming that
they and the material properties are constant throughout. We then do the same
on the cell vertex (m,n) with the discretized continuous scalar flux having the form
geiλxmhejλynk, and insert the two ansatz into the equations. The result is a 12 ×
12 matrix for the discrete Fourier coefficients corresponding to the (preconditioned)
equations. We can then compute the singular values of this matrix to estimate the
condition number.

In Tables 1–4 both measured condition numbers and the results of the Fourier
analysis are tabulated. Each entry in the table for a ∆x, ∆y combination lists the
measured condition number with vacuum boundary conditions, the measured condi-
tion with reflective boundary conditions, and the estimate from the Fourier analysis.
In essence, the Fourier analysis estimates the condition number for a problem with
an infinite number of identical cells. The measured condition numbers are, of course,
for problems with a finite number of cells, including the effects of boundaries. Thus
it makes sense that the Fourier analysis estimates are in better agreement with the
measured condition numbers for reflective boundary conditions because the physical
situation corresponds more closely to the assumptions made in the Fourier analysis.
This is especially true for “artificial” problems such as these, which were very thin in
one of the dimensions in order to see the effects of high aspect ratios. A more mean-
ingful comparison would be to compute the condition numbers for problems with
fixed dimensions and increasing the numbers of cells in one or the other dimension
to construct cells with high aspect ratios. Unfortunately, this is a computationally
difficult problem because of the large number of unknowns. A 10 × 10 cell problem
(1200 unknowns) was a practical limit.

We also computed the solution to the same problems using with GMRES(20)
with our two-level preconditioner. We used vacuum boundary conditions on the four
faces of the problem. An isotropic source of randomly distributed strength over [0, 1]
particles/cm3 s is specified throughout the problem. The convergence criterion is
‖r̄k‖2 ≤ 10−5‖b̄‖2, where r̄k is the recursively computed GMRES residual and b̄ is the
source vector. The continuous finite element diffusion solution in the preconditioner is
computed using CG to a tolerance of ‖r̄k‖2 ≤ 10−11‖z̄‖2, where r̄k is the “inner” CG
residual and z̄ is a projected DFE vector. It is possible to relax the inner convergence
criteria while maintaining the effectiveness of the preconditioner to make the overall
algorithm more efficient. But this strict tolerance was imposed on the inner iterations
to ensure there is no effect on the outer iteration convergence due to accumulation
of error from the preconditioner. The number of iterations are tabulated together
with CPU time in Tables 5–8. CPU time is measured in seconds on a single user
SGI Octane. It includes the (negligible) matrix setup time. If convergence was not
reached in 2000 iterations then we list the final residual norm in brackets.

The first observation to make from the condition number calculations is that our
preconditioner, regardless of the smoother being used, effectively improves the con-
vergence of GMRES compared to no preconditioning at all. It is most effective for
problems with cells that have an optical thickness greater than one in both dimen-
sions. If the cells have an aspect ratio, then the effectiveness of the preconditioner
is reduced and the smoother plays an increasingly important role. If the cells are
optically very thin in either of the two dimensions, the preconditioner loses effective-
ness; both block relaxation smoothers help in this case. If the cells are very optically
thick in one dimension and very optically thin in the other, then the line relaxation
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∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4

1.8(5)
3.3(12)
3.4(12)

1.0(5)
3.3(11)
3.4(11)

2.9(4)
3.3(10)
3.4(10)

2.0(3)
3.3(9)
3.4(9)

6.5(1)
4.9(8)
4.9(8)

1.4(2)
2.3(8)
2.3(8)

1.3(3)
2.2(8)
2.2(8)

10−3

1.8(4)
3.3(10)
3.3(10)

7.7(3)
3.3(9)
3.3(9)

9.5(2)
3.4(8)
3.4(8)

6.4(1)
4.9(7)
4.9(7)

1.4(2)
2.3(7)
2.3(7)

1.3(3)
2.2(7)
2.2(7)

10−2

1.8(3)
3.3(8)
3.3(8)

3.6(2)
3.4(7)
3.4(7)

5.7(1)
4.9(6)
4.9(6)

1.3(2)
2.3(6)
2.3(6)

1.2(3)
2.2(6)
2.2(6)

10−1

2.3(2)
3.4(6)
3.4(6)

6.5(1)
4.9(5)
4.9(5)

1.1(2)
2.3(5)
2.3(5)

1.1(3)
2.2(5)
2.2(5)

100

1.1(2)
5.7(4)
5.7(4)

1.4(2)
2.3(4)
2.3(4)

1.1(3)
2.2(4)
2.2(4)

101

5.3(2)
3.8(3)
3.8(3)

1.0(3)
2.3(3)
2.3(3)

102

3.7(2)
3.8(2)
3.9(2)

Table 1. Condition numbers for the fixed-size problem without preconditioning. En-
tries are for (1) vacuum boundary conditions, (2) reflective boundary condi-
tions, (3) Fourier analysis estimate.

smoother is most effective. If the cells are optically thin in both dimensions, the pre-
conditioner begins to lose effectiveness. The extent of this degradation is also strongly
affected by the smoother. Comparing computational effort with the condition number
calculations shows that there is a rough correspondence between the effectiveness of
the preconditioner and condition number. This is potentially very useful. A Fourier
analysis could predict the relative improvements in convergence that can be expected
among various other possible smoothers or preconditioning algorithms in the future.

To summarize, the preconditioner is very effective and significantly improves con-
vergence of GMRES. Performance in different limits of the cell optical thickness in
each dimension can be improved to a greater or lesser extent by the choice of smoother.
One might also question whether the relaxations alone, without GMRES, are effective
preconditioners. We will report on this in the future, but we simply state here that the
continuous finite element diffusion solution is essential for effective preconditioning,
especially in the thick transport problems in which we plan to implement solution of
the discontinuous P1 equations.

5.2. A Numerical Experiment. We will now present the results of some nu-
merical experiments to measure how computational effort scales with problem size.
The problem is a variation of the two-dimensional iron-water problem used as an
example problem for neutron transport many times over the years (see [19], for exam-
ple). It contains several types of regions, some diffusive and some not. The coarsest
mesh is illustrated in Fig. 2. It consists of a 30cm× 30cm square, heterogeneous sys-
tem containing iron and water. The left and bottom faces are reflective with vacuum
boundary conditions on the right and top faces. A unit distributed source is located
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∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4

1.6(5)
1.6(5)
1.2(6)

5.9(5)
6.0(5)
7.2(5)

5.5(5)
5.6(5)
5.6(5)

9.0(4)
9.0(4)
9.1(4)

3.4(4)
5.4(4)
5.5(4)

1.4(5)
4.3(5)
4.3(5)

1.4(6)
6.3(7)
3.0(6)

10−3

1.5(4)
1.6(4)
4.6(4)

2.1(4)
2.2(4)
2.2(4)

8.4(3)
8.5(3)
8.6(3)

3.4(3)
5.4(3)
5.5(3)

1.4(4)
4.3(4)
4.3(4)

1.4(5)
3.0(5)
3.0(5)

10−2

1.2(3)
1.2(3)
1.5(3)

5.8(2)
6.0(2)
6.0(2)

3.4(2)
5.4(2)
5.4(2)

1.4(3)
4.3(3)
4.3(3)

1.4(4)
3.0(4)
3.0(4)

10−1

4.7(1)
5.3(1)
5.4(1)

3.1(1)
5.1(1)
5.2(1)

1.4(2)
4.3(2)
6.2(2)

1.3(3)
3.0(3)
1.1(4)

100

5.2(0)
5.3(0)
5.3(0)

3.5(2)
6.2(1)
6.4(1)

7.7(2)
1.1(3)
1.3(3)

101

2.3(1)
2.4(1)
2.4(1)

1.5(2)
1.7(2)
1.7(2)

102

1.4(2)
1.5(2)
1.5(2)

Table 2. Condition Numbers for the fixed-size Problem using Algorithm 1 with
Richardson smoothing. Entries are for (1) vacuum boundary conditions,
(2) reflective boundary conditions, (3) Fourier analysis estimate.

in the 12cm×12cm lower left corner. For water, the total cross section is 3.3333cm−1

and scattering ratio 0.9941 and for iron the total cross section is 1.3333cm−1 and
scattering ratio 0.8308. Larger problems with greater numbers of unknowns and
correspondingly thinner cells were generated by taking multiples of the “base” dis-
cretization of a Nx = 15 × Ny = 15 mesh. We chose a convergence tolerance of
‖r̄k‖ ≤ 10−5‖b̄‖ and 5000 maximum iterations. The diagonally scaled inner CG iter-
ations were computed to a tolerance of ‖r̄k‖ ≤ 10−11‖z̄‖ where r̄k is the CG residual
and z̄ is a projected DFE vector. The computations were carried out on a single SGI
Origin2000 compute server.

In the first series of problems we used GMRES(20) to solve the iron-water problem
as the number of cells in the base problem is scaled by some factor f in the x and
y dimensions simultaneously. The number of unknowns is 12 · 152 · f2 and f =
1, 2, 4, . . . , 20. However, even with a very large memory of 15GB and compressed
storage of the block Jacobi matrices the largest problem using the block line smoother
was limited to f = 14 (a total number of 529,200 unknowns). The number of iterations
and CPU time for the solution of the preconditioned problem are shown in Fig. 3 for
three different smoothers. We already indicated that the execution time needed to
extract and compute the block line matrices at every invocation of the preconditioner
was prohibitive. The only practical solution was to invert and store these matrices
ahead of time. However, the high setup times required to invert and store these
matrices added significantly to the total execution time. This may be seen in Fig. 3(b)
where we plotted the time just for the iterative solution using the block line smoother
in addition to the total time. Once the problem size was greater than f 2 = 64 the
fraction of time spent setting up the block line matrices was constant, about 90% of the
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∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4

1.0(4)
1.1(4)
1.1(4)

7.6(3)
8.5(3)
1.5(4)

1.0(3)
1.2(3)
1.6(4)

1.4(2)
2.6(3)
1.6(4)

3.1(1)
2.3(4)
2.0(4)

3.0(1)
2.2(5)
1.9(5)

3.0(1)
2.2(6)
1.9(6)

10−3

1.0(3)
1.1(3)
1.1(3)

7.6(2)
8.4(2)
1.5(3)

9.7(2)
2.6(2)
1.6(3)

3.1(1)
2.3(3)
2.0(3)

3.0(1)
2.2(4)
1.9(4)

3.0(1)
2.2(5)
1.9(5)

10−2

1.0(2)
1.1(2)
1.1(2)

7.4(1)
8.2(1)
1.4(2)

2.6(1)
2.2(2)
2.0(2)

2.5(1)
2.2(3)
1.9(3)

2.5(1)
2.2(4)
1.9(4)

10−1

1.2(1)
1.3(1)
1.2(1)

1.1(1)
2.0(1)
1.8(1)

2.3(1)
2.1(2)
1.9(2)

2.6(1)
2.2(3)
1.9(3)

100

2.8(0)
3.4(0)
2.9(0)

1.4(1)
1.9(1)
1.8(1)

5.2(1)
2.1(2)
1.8(2)

101

2.7(0)
3.3(0)
2.8(0)

1.7(1)
1.7(1)
1.7(1)

102

2.5(0)
2.7(0)
2.5(0)

Table 3. Condition numbers for the fixed-size problem using Algorithm 1 block cell
relaxations. Entries are for (1) vacuum boundary conditions, (2) reflective
boundary conditions, (3) Fourier analysis estimate.

total execution time. The setup times for the block cell preconditioner are negligible
compared to the overall execution times, even for the largest problems and there is
no additional storage or setup required for the Richardson smoother. Therefore, only
total execution times are shown in Fig. 3(b) for the results with these smoothers.

The next figure, Fig. 4, shows a plot of floating point operations (FLOP) per
unknown, including setup time, as a function of the problem size for the same problem.
If such a plot were roughly constant, the solution method could be considered optimal.
They were measured on the ORIGIN 2000 machines using the built-in counter (madds
count as one floating point instruction on this machine). Under this scaling, the
method does not appear to optimal which is likely a consequence of the diagonally
scaled inner CG iteration, which does not scale optimally.

With these results in mind, we consider a different problem size scaling. Rather
than simply increasing the number of unknowns, we will fix the level of discretization
in terms of cell optical thicknesses by scaling the size of the physical domain of the
base problem at the same time we scale the number of unknowns in the problem.
In addition to increasing the number of unknowns in each dimension by the factor
f = 1, 2, 4, . . . , 20 as before, we also scale the physical x and y dimensions of the
square domain of the base problem by the same factor. This keeps the cell optical
thickness constant, so we call these “constant scaling” problems. The rest of the
problem parameters are the same as before. The high setup costs associated with the
block line relaxations seen in the previous set of problems and the potential difficulties
of implementing them in parallel or on three dimensional unstructured meshes lead
us to conclude that the block line smoother is noncompetitive. We will not include
measurements using that smoother for these scalings.
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∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4

9.5(3)
9.7(3)
6.3(4)

1.4(4)
1.6(4)
1.6(4)

2.1(3)
4.7(3)
1.8(6)

6.7(1)
1.1(2)
1.0(2)

2.6
3.4
3.1

2.1
2.5
2.3

2.1
2.5
2.3

10−3

9.1(2)
9.3(2)
2.0(3)

4.4(2)
6.2(2)
4.2(3)

4.6(1)
9.0(1)
8.3(1)

2.6
3.4
3.1

2.1
2.5
2.3

2.1
2.5
2.3

10−2

6.2(1)
6.5(1)
6.9(1)

1.5(1)
3.1(1)
2.9(1)

2.3
3.3
3.0

2.1
2.4
2.3

2.1
2.4
2.3

10−1

4.5(0)
5.3(0)
4.8(0)

2.0
2.7
2.4

2.0
2.3
2.2

2.0
2.4
2.2

100

1.5
1.8
1.6

1.8
2.1
1.9

1.9
2.1
1.9

101

1.5
1.9
1.5

1.8
2.1
1.8

102

1.5
1.8
1.5

Table 4. Condition numbers for the fixed-size problem using Algorithm 1 with block
line relaxations. Entries are for (1) vacuum boundary conditions, (2) reflec-
tive boundary conditions, (3) Fourier analysis estimate.

∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4 [8.8(-1)]† [9.3(-1)]† [9.4(-1)]† 808/3.0 182/0.7 231/0.9 1535/5.6

10−3 [8.8(-1)]† [9.3(-1)]† 810/3.0 183/0.2 218/0.9 [3.7(-4)]†

10−2 1155/4.2 695/2.6 182/0.7 212/0.8 [6.0(-5)]†

10−1 302/1.2 158/0.6 168/0.7 873/3.2

100 85/0.4 109/0.4 240/0.9

101 149/0.6 178/0.7

102 51/0.2

Table 5. Number of GMRES(20) iterations and CPU time for the fixed-size problem
with no preconditioning.
†Did not converge in 2000 iterations, final residual in brackets.

In Figure 5 we show the number of iterations and FLOP count per unknown for
the constant scalings. In this case, not only does the problem scale optimally with the
number of unknowns but the total computational effort is significantly lower. This
is an encouraging result if we know we are going to solve problems with a very large
numbers of cells on a mesh with well shaped cells that are not too thin. This also
indicates the results for the original scaling are determined by the mesh cell size.
Furthermore, with a fixed mesh cell size there is not a large difference in either the
number of iterations or the computational effort between the two smoothers.

More will be said regarding these scalings later, after we first compare the precon-
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∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4 [4.3(0)]† [3.8(-1)]† [5.2(-1)]† [3.0(-3)]† [4.2(-4)]† [4.1(-5)]† [4.1(-5)]†

10−3 [8.2(-3)]† [7.9(-4)]† [7.2(-4)]† [5.7(-5)]† [1.8(-4)]† [7.1(-5)]†

10−2 613/25 547/41 548/27 1297/43 [6.37(-5)]†

10−1 102/4.1 92/5.9 235/9.0 815/26

100 23/0.9 43/2.2 179/6.2

101 15/0.6 40/1.7

102 15/0.5

Table 6. Number of GMRES(20) iterations and CPU time for the fixed-size problem
with Algorithm 1 and Richardson smoothing.
†Did not converge in 2000 iterations, final residual in brackets.

∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4 68/5.9 [2.2(-5)]† 151/18 37/3.3 20/1.6 16/1.2 13/1.0

10−3 57/4.9 292/34 51/5.9 25/2.1 18/1.4 15/1.1

10−2 44/3.8 72/8.7 27/2.6 19/1.5 17/1.3

10−1 25/2.2 24/2.7 19/1.6 16/1.3

100 11/1.0 12/1.2 11/0.9

101 6/0.6 10/0.9

102 4/0.4

Table 7. Number of GMRES(20) iterations and CPU time for the fixed-size problem
using Algorithm 1 and block cell relaxations.
†Did not converge in 2000 iterations, final residual in brackets.

∆y

∆x 10−4 10−3 10−2 10−1 100 101 102

10−4 195/113 253/157 39/24 10/6.1 8/4.9 7/4.3 5/3.3

10−3 97/57 66/41 14/8.9 8/5.1 7/4.4 5/3.2

10−2 42/25 19/12 8/5.1 7/4.4 5/3.3

10−1 14/8.3 7/4.6 6/3.9 5/3.3

100 6/3.9 5/3.4 4/2.8

101 4/2.8 4/2.8

102 3/2.3

Table 8. Number of GMRES(20) iterations and CPU time for the fixed-size problem
with Algorithm 1 and block line relaxations).

ditioned solution of the iron-water problem to that without preconditioning. This will
give an idea of the effectiveness of the preconditioner, independent of computational
computational efficiency. Because we found that GMRES(20) converges very slowly
for this problem without preconditioning, the effectiveness of the preconditioners can
be judged by comparing the convergence rates of the various methods. We define the
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Fig. 2. Iron-water problem “base” mesh.

convergence rate by taking the average over all iterations k of

[

−log10

(

‖rk+1‖

‖rk‖

)]−1

,

where ‖rk‖ is the norm of the computed GMRES(20) residual at iteration k. This
represents the expected number of iterations needed to decrease the residual by one
order of magnitude (one decimal digit). The average is used because convergence
curves are not necessarily straight lines. The first three iterations are excluded from
this average because we found that the the convergence curves “settled down” after
the first few iterations.

In Table 9 we display the measured convergence rate as a function of the problem
size factor f2 for the original and the constant scalings. The outstanding effective-
ness of the preconditioner is apparent. The effectiveness is especially impressive for
the original scalings. With preconditioning, just a handful of iterations improves the
solution by one decimal place. When the problem is not preconditioned, however, the
constant scalings exhibit a constant convergence rate while the convergence rate in-
creases in the original scalings. Taken together with the fact that the original scalings
are not optimal, this implies that the number CG inner iterations is increasing with
decreasing mesh width. This is probably related to the increasing condition number
of the preconditioned system seen in the Fourier analysis and measurements shown
earlier. The CFE diffusion discretization is closely related to 5–point finite difference
stencils for second order equations. It is well known that such discretizations suffer
from condition numbers that are inversely proportional to mesh sizes. It is possible,
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Fig. 3. Number of iterations and CPU time for the iron-water problem as a function
of problem size. Three different smoothing relaxations are shown.
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Fig. 4. Floating point operations (FLOP) per unknown as a function of problem size
for three different smoothers.

Problem Original Scaling Constant Scaling

Size (f2) NPa Rb BCc BLd NP R BC

1 16.9 4.57 1.55 0.84 16.9 4.57 1.55

4 40.2 5.76 1.78 0.86 22.2 4.21 1.50

16 123 7.23 2.35 0.87 23.9 3.55 1.52

36 204 8.80 2.94 0.96 21.9 3.11 1.50

64 412 10.0 3.44 1.07 20.1 3.09 1.49

100 607 11.3 4.01 1.26 19.6 3.08 1.48

144 1039 12.5 4.48 1.42 19.3 3.05 1.47

196 1400 13.8 4.89 19.1 3.03 1.46

256 1745 15.0 5.25 18.7 3.02 1.46

324 2227 16.2 5.59 18.6 3.00 1.45

400 2666 17.5 6.01 18.4 2.99 1.45

Table 9. Convergence rates of GMRES(20) for the original iron-water problem scal-
ings tabulated as a function of the scaling parameter f .
aNo preconditioning bRichardson cBlock cells dBlock lines

even likely, that the dependence on condition number and the slow convergence in
problems with thin mesh cells is a reflection of this dependence. If this is true, perfor-
mance could be improved if multigrid methods are used to precondition the inner CG
iterations, although there are additional issues associated with the use of multigrid
methods. We will address this issue in future investigations.

6. Summary. We have developed an effective preconditioner for what is essen-
tially a new mixed, discontinuous Galerkin scheme for elliptic operators. The two-level
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Fig. 5. Number of iterations and optimality results for the iron-water problem with
constant scalings as a function of problem size. Two smoothing relaxations
are shown.
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preconditioner, which is based on a continuous finite element diffusion equation dis-
cretization, is robust and effective for a wide range of problems. Using a Fourier
analysis to estimate the condition number of a particular, homogeneous problem, we
showed that it is possible to predict the relative effectiveness of the preconditioner.

We found that when the mesh contains regions which are thick and diffusive,
the preconditioner is most effective and solutions can be computed efficiently. When
mesh cells are optically thin or have a high aspect ratio, the relative improvement
in convergence rate diminishes. The smoothers based on block Jacobi relaxations
help to improve the performance of the preconditioner in that case. Unfortunately,
the high setup costs associated with the block line Jacobi smoothers made that it
computationally inefficient even though it was the most effective. We can conclude
that for future applications a block cell Jacobi relaxation smoother should be used.
Still, the method did not scale optimally when the mesh cells become thin. One way
to address this is issue might be to precondition the inner iterative CG solution with
an optimal method, like multigrid, for example. Perhaps a fixed number of multigrid
cycles alone, without CG, might even be better.

Extension to three dimensional unstructured meshes is ongoing. It appears that
the most efficient implementation should be a continuous diffusion preconditioner
together with a block cell Jacobi relaxation smoother. This should also be efficient if
used in a parallel implementation.

Finally, we note that the stability (in the LBB or inf-sup sense [5]), as well as the
accuracy, of our DFE discretization of the P1 equations is being investigated.
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